Hybrid ARIMA-Support Vector Machine Model for Agricultural Production Planning
نویسنده
چکیده
In this study we develop the hybrid models for forecasting in agricultural production planning. Real data of Thailand’s orchid export and Thailand’s pork product are used to validate candidate models. Autoregressive Integrate Moving Average (ARIMA) is also selected as a benchmarking to compare other developed models. The main concept of building the models is to combine different forecasting techniques in order to overcome the time-series forecasting errors. The combined models of Support Vector Machine (SVM) and ARIMA are considered as they can be represented both nonlinear and linear values. We perform many experiments on the combination of SVM and ARIMA and select the most precision model, which is the SVM (10) and ARIMA hybrid model, by using statistical criteria. For orchid export case, comparing to ARIMA, the error reduction from MAE, RMSE, and MAPE is 2.46%, 1.96%, and 4.63%, respectively. Moreover, the error reduction from MAE, RMSE, and MAPE is 8.08%, 6.24%, and 6.88%, respectively, for the case of pork product.
منابع مشابه
Forecasting Air Pollution Concentrations in Iran, Using a Hybrid Model
The present study aims at developing a forecasting model to predict the next year’s air pollution concentrations in the atmosphere of Iran. In this regard, it proposes the use of ARIMA, SVR, and TSVR, as well as hybrid ARIMA-SVR and ARIMA-TSVR models, which combined the autoregressive part of the autoregressive integrated moving average (ARIMA) model with the support vector regression technique...
متن کاملForecasting Air Pollution Concentrations in Iran, Using a Hybrid Model
The present study aims at developing a forecasting model to predict the next year’s air pollution concentrations in the atmosphere of Iran. In this regard, it proposes the use of ARIMA, SVR, and TSVR, as well as hybrid ARIMA-SVR and ARIMA-TSVR models, which combined the autoregressive part of the autoregressive integrated moving average (ARIMA) model with the support vector regression technique...
متن کاملA hybrid model of self organizing maps and least square support vector machine for river flow forecasting
Successful river flow forecasting is a major goal and an essential procedure that is necessary in water resource planning and management. There are many forecasting techniques used for river flow forecasting. This study proposed a hybrid model based on a combination of two methods: Self Organizing Map (SOM) and Least Squares Support Vector Machine (LSSVM) model, referred to as the SOM-LSSVM mod...
متن کاملPREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...
متن کاملEvaluation of the Efficiency of Linear and Nonlinear Models in Predicting Monthly Rainfall (Case Study: Hamedan Province)
In this research, we used the support vector machine (SVM), support vector machine combine with wavelet transform (W-SVM), ARMAX and ARIMA models to predict the monthly values of precipitation. The study considers monthly time series data for precipitation stations located in Hamedan province during a 25-year period (1998-2016). The 25-year simulation period was divided into 17 years for t...
متن کامل